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The Kuramoto-Sivashinsky (KS) equation is one of the simplest but generic nonlinear equations in dis-
sipative systems, such as hydrodynamics and moving interfaces. The KS equation with a linear stabiliz-
ing term occurs in many situations: (i) directional solidification where kinetics are decisive and (ii)
terrace-edge evolution in step-flow growth in the presence of step-step interaction. The first focus is to
show the genericity of the KS equation. We then present an extensive analytical and numerical study of
the stabilized KS equation. It is found that this equation reveals a variety of secondary bifurcations. Be-
sides the usual Eckhaus instability, the cellular structure exhibits (i) a period-halving of the cellular state,
(i) parity breaking (PB), (iii) vacillating breathing (VB), and (iv) oscillation with a spatial wavelength “ir-
rationally” related to the basic one. Among many other features, this equation manifests also a complex
mixture of PB and VB, and pairs of anomalous cells, which are observed in many experimental situa-
tions. The occurrence of some of the secondary bifurcations (e.g., PB) is examined analytically in the vi-
cinity of the codimension-2 bifurcation where the two modes ¢ and 2q (q being the wave number) bifur-
cate, and for others (e.g., VB) by analogy with the problem of a quasifree electron in a crystal. Among
other results reported here, we show that the VB mode is associated with the appearance of a wave-
vector gap, due to a resonance between the “‘incident” wave and the “transmitted” one, while the analog
of the Bragg resonance is not crucial. The analytical part of our investigation is supported by the full
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numerical calculation.

PACS number(s): 05.40.+j, 61.50.Cj, 68.55. —a
I. INTRODUCTION

One of the most common features in nonlinear dissipa-
tive systems is that they often spontaneously build up a
spatially organized pattern from an initially structureless
one when the system is brought away from equilibrium
by varying a control parameter [1]. Well-known situa-
tions are encountered, for example, in hydrodynamics
and crystal growth. A typical example in the first
category is the Rayleigh-Bénard one: an initially quies-
cent fluid heated from below becomes unstable against
the formation of rolls when the thermal gradient exceeds
a certain critical value. Another well studied example is
directional solidification; that is, pulling the sample at a
constant speed in an external thermal gradient. It is well
known that an initially planar solidification front be-
comes morphologically unstable when the pulling speed
exceeds a certain critical value [2]; the front assumes a
cellular periodic structure.

Near the instability threshold these systems can often,
in principle, be described by simple models having a
universal form, which go under the name of amplitude
equations [3]. Further beyond the threshold, in the
strongly nonlinear regime, it is sometimes possible to
derive simple phase equations by perturbing about an
ideal periodic structure [4]. The main outcome of such
studies is the determination of the nature of the bifurca-
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tion (supercritical or subcritical) and the boundaries of
the phase instability (the Eckhaus instability) in the pa-
rameter space. The Eckhaus instability is our first exam-
ple of a secondary instability, in the sense that this insta-
bility corresponds to that of a cellular structure, which it-
self bifurcates from the initially structureless state (e.g., a
quiescent fluid, a planar front). The instability of the
structureless state is referred to as the primary instability.

More recent experimental efforts have led to the
discovery of a myriad of other secondary instabilities.
The most common one is the so-called broken-parity (BP)
traveling state, the first pertinent experimental evidence
of which is due to Simon, Bechoefer, and Libchaber [5] in
the context of directional growth of a nematic phase.
This state is characterized by the inclusion of a few asym-
metric cells, escorted by two large domains of the ordi-
nary symmetric state, which are approximately twice as
large as the symmetric ones. As a consequence of parity
breaking, the asymmetric domain travels sideways at a
constant speed. Since that discovery, similar phenomena
were found in eutectic systems [6], in the printer system
[7], and in other various situations [8—11]. The fact that
the asymmetric domains were first observed as small in-
clusions (a few cells) has led to their denomination: *‘soli-
tary mode,” ‘“‘solitary waves,” etc.

With regard to parity breaking, an important idea was
put forward by Coullet, Goldstein, and Gunaratne [12],
who suggested that the appearance of BP modes results
from the loss of stability of the symmetric cells against
parity-breaking fluctuations. They built a phenomeno-
logical picture that retained some interesting observed
features. The suggestion of Coullet, Goldstein, and
Gunaratne should imply that there exist extended BP
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solutions (i.e., solutions that extend along the whole
front, in the case of a moving interface) that travel side-
ways at a constant speed. Later, it was shown indeed,
both for eutectics [13] and liquid-crystal systems [14,15],
that such solutions exist; they emerge as a direct bifurca-
tion from the initially symmetric pattern. An experimen-
tal suggestion [16] to have access to an extended BP state
in the eutectic system—and thus to be in a situation simi-
lar to that dealt with in theoretical investigations—has
been impressively demonstrated by Faivre and Mergy
[17].

The second common example of secondary instabilities
concerns the vacillating-breathing (VB) mode: each cell
oscillates in phase opposition to its neighbors. This is a
bifurcation that corresponds to a spatial period doubling
and is oscillatory in time. This instability has been also
observed in many systems [9]. By concentrating on the
high-speed regime in the liquid-crystal systems we have
shown recently [15] that the model equation does indeed
support a VB solution, which results from the loss of sta-
bility of the symmetric pattern.

In a general framework, it is of great importance to
know whether or not the number of possible secondary
instabilities is finite, and if so how to classify them. Coul-
let and Iooss [18] use symmetry arguments to classify ten
generic secondary instabilities; those presented above are
typical examples. It is also crucial to know which of the
potential instabilities are realized within a specific model.
The studies mentioned above regarding PB and VB have
proceeded along this line.

In general, dynamics involve complex equations, with
sometimes nonlocal and retarded effects (the case of eu-
tectics, for example), which make their complete descrip-
tion rather difficult. The large-speed regime reached by
liquid-crystal experiments is theoretically a relatively
tractable situation, where dynamics turn out to be quasi-
local [19], (i.e., described by a nonlinear partial
differential equation). Nevertheless, even in such a case
dynamics still involve fancy nonlinearities and some as-
pect of retardation (propagative terms are present and
not only diffusive). One of the challenges would be to
recognize which of these nonlinearities are relevant and
possibly to map them onto a picture exhibiting clearly
their underlying physics. Also it is crucial to identify
whether the propagative character of the equation is per-
tinent to the birth of some specific secondary instabilities,
such as the VB one, or not. On the other hand, this kind
of equation, although it describes remarkably well many
interesting features for the specific liquid-crystal system,
it does not possess any universality—at least without any
renormalization procedure, which has not been attempt-
ed yet. It appears therefore strongly desirable to have at
our disposal some generic model, for which to investigate
the possible secondary bifurcations.

The purpose of this paper is to bring out, from a rather
universal but relatively simple equation, a myriad of
secondary instabilities. This is the stabilized Kuramoto-
Sivashinsky (KS) [20,21] equation, which we shall write
as

h,=—ah—h,—h,  +h?, (1.1)

XXXX

where h(x,t) is some dimensionless function (e.g., the
front profile) of dimensionless space and time variables x
and t, and a is a parameter that mimics a stabilizing
effect (e.g., it is proportional to the thermal gradient in
directional solidification or to the strength of step-step in-
teraction in the step-flow growth; see next section). In
this paper we shall first show that Eq. (1.1) is generic be-
fore proceeding to the search of its (rich) dynamics.

The usual KS equation (without the stabilizing term,
a=0) models a pattern formation in different contexts
and is a paradigm of low-dimensional behavior in solu-
tions to partial differential equations. Kuramoto [20] de-
rived it in the context of reaction-diffusion equations
modeling the Belousov-Zabotinskii reaction. Sivashinsky
[21] derived it to model small thermal diffusive instabili-
ties in laminar flame fronts. The equation arises also,
among other situations, in Poiseuille flow of a film layer
on an inclined plane [22], in solidification at large super-
cooling [23], and in the step-flow growth [24]. Numerous
investigations were devoted to the KS equation, most of
them focused, even with a (phenomenological) small sta-
bilizing term, on the transition to chaotic solutions [25],
which are exhibited by the KS equation at moderate as-
pect ratios. (The aspect ratio is defined here as the ratio
of the size of the system to the typical stability length
which corresponds to the neutral wavelength for
infinitesimal perturbations about the solution 2 =0.)

The presence of the stabilizing term plays an important
role (its physical origin for some systems will be described
in the next section). It allows us to progressively increase
the complexity of dynamics starting from the trivial solu-
tion (A =0). We shall see that this solution becomes un-
stable for a critical value of a and turns into a cellular
structure, which in turn can lose its stability against vari-
ous secondary instabilities. The surprising feature is that,
despite its apparent simplicity (the only nonlinearity is
quadratic), the stabilized KS equation manifests five gen-
eric instabilities, plus a rich set of tertiary instabilities.
The five secondary instabilities are (i) the Eckhaus insta-
bility, (ii) the PB one, (iii) the period-halving one, where
the cellular solution with the basic wave number g ceases
to exist, (iv) the VB instability, and (v) an oscillatory in-
stability with a spatial period “irrationally” related to the
basic one. For brevity we use the abbreviation IVB (I
stands for irrationality). It is fascinating that this simple
equation manifests an even richer dynamics than ap-
parently more complex equations [19,15]. In particular,
the IVB mode has not been reported for any specific sys-
tem, to our knowledge. This paper is a combination of an
analytical and numerical efforts that allow us to shed
light on various instabilities. Most of our reasoning will
be easily exemplified by this simple equation, but we
should keep in mind that it will work perfectly well with
more complex equations.

In this paper we shall proceed along the following
lines. In Sec. II we show in a general manner (without
reference to any particular system) that the KS equation
arises generically above bifurcations with a vanishing
wave number; the vanishing character of the wave num-
ber is also generic and is traced back to symmetries. In
the presence of an external field (e.g., a thermal gradient
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in directional solidification) that breaks the symmetry un-
der a translation h—h +c¢, where ¢ is a constant, we
show that Eq. (1.1) is generic. Having motivated the gen-
ericity of the KS equation, we shall proceed to the search
for secondary instabilities. The most well known of them
is the Eckhaus instability, to which we devote a brief dis-
cussion in the Appendix. We first start in Sec. III with
the determination of the steady-state periodic pattern,
and specify the range of existence. The next step is de-
voted to the full stability problem by making use of the
Floquet-Bloch theorem. We give the overall picture of
our findings in Sec. IV. In Sec. V we shall be concerned
with the dynamics close to the codimension-2 point
where both the g and 2q (g is the wave number of the
periodic structure) modes are dangerous. We reduce, in a
coherent way, the original equation to a set of two com-
plex amplitude equations for the two bifurcating modes.
We show analytically that (i) the cellular mode undergoes
a period-halving, where the steady-state solution with ¢
as a basic wave number ceases to exist, whereby solutions
with 2q as a basic wave number merge. This occurs when
g is small enough (basically when the growth rates of
both modes are of the same order). (ii) Before the
period-halving bifurcation takes place, the mixed mode
(where the ¢ and 2g modes still coexist) undergoes a
parity-breaking bifurcation. The full numerical calcula-
tion corroborates our analytical analysis. In Sec. VI, by
analogy with the problem of a quasifree electron in a
crystal, we develop a simple analytical treatment for the
VB mode. We find that this mode, along with the one
where the spatial periodicity is “irrationally” related to
the basic one, results from a resonance between the
“wave” function and its transmission. Our analysis cap-
tures the essential features of the full numerics. An
analysis beyond secondary instabilities of the original
equation will be given in Sec. VII, where we find, in par-
ticular, a mixture of VB and BP modes and the birth of
pairs of anomalous cells (two asymmetric cells, with one
being a mirror image of the other). Section VIII summa-
rizes our results.

II. THE KS EQUATION AS A GENERIC EQUATION
NEAR LONG-WAVELENGTH PRIMARY INSTABILITIES

In this section we show the generic character of the KS
equation. Assume that the physical quantity of interest
for a given system is described by a field u(x,t). This
quantity can be in the general case an N-dimensional vec-
tor, a function of the vector x in the d dimension and of
time. Without loss of generality, we shall assume that the
field is scalar, depending on a one-dimensional space vari-
able x, and is a function of time. This means, in particu-
lar, that we consider the case of a purely codimension-1
primary bifurcation, so that the relaxing modes of the
vector field can be adiabatically eliminated. As a conse-
quence of this operation, the active field becomes scalar.
For example, u(x,t) can represent a one-dimensional in-
stantaneous front position. In general, u obeys a non-
linear partial differential equation, or in some cases
integrodifferential equations. We concentrate here only
on the first category, and our reasoning will perfectly
operate in the most general case. Therefore, u is taken to

obey an equation of the form

E du ou
o ax2 3’ dx |
where L and N stand for analytic linear and nonlinear
differential operators, respectively, and p mimics some
control parameter. We require the parity symmetry with
respect to x; that is, we assume that the original physical
description of the system requires an equivalence between
left and right. Note that this requirement is expressed ex-
plicitly on the linear operator.

In a completely translationally and rotationally invari-
ant environment, it is clear that if u is a solution, then
u +const is also a solution. For example, if one fixes
z=u(x,t) to be the front position, then this position is
determined only up to an additive constant, simply ex-
pressing the translational invariance along the z axis. If
the front is moving in an external field (e.g., a liquid-solid
interface moving in an external thermal gradient), howev-
er, then this invariance is broken.

Assume that the physical system described by the field
u is susceptible to bifurcations. More precisely, assume
that the trivial solution ¥ =0 becomes unstable for some
critical value of the control parameter, say 1. The study
of its stability is accomplished by looking for perturba-
tions of the form

du~e¥¥ i 4cc.

u+N =0, (2.1

(2.2)

where ¢ is the wave number and o is the amplification
(attenuation) rate. The solution u =0 is unstable if
Re(w) >0, at least for a particular g, while it is stable if
Re(w) <0 for all ¢’s. The critical situation (or bifurca-
tion) is obtained when Re(w)=0 for a particular value of
g, say g =q,., and Re(w) <0 for all other values. This
condition is expressed by
w=0, @ =0.
g

Figure 1 shows schematically the situation (the bifurca-
tion occurs for u=pu,). Note that we consider stationary
primary bifurcations only.

An important point here is that, due to the rotational

(2.3)
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FIG. 1. Schematic plot of the dispersion relation. The

dashed line represents the dispersion relation below the instabil-
ity, while the full line, that above the instability. We anticipate
here that the bifurcation occurs at ¢ =0 (see text below).
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invariance, there always exists a neutral mode, =0 for
q =0. The invariance in the present case is that u +const
is also a solution of (2.1). This invariance has the impor-
tant consequence that generically the bifurcation occurs
at a vanishing wave number, g. =0. Indeed, a bifurcation
occurs only because two (or more) physical phenomena
are competing. Since in the linear regime the two com-
peting effects are superposable, we can assign to each
effect its dispersion relation. Since the rotational symme-
try holds for each of them, their growth rates vanish at
g =0. Figure 2 shows schematically the behavior of both
dispersion relations. We assume here that there exists a
maximum wave number above which all perturbations
decay. Physically this originates, for example, from sur-
face tension for a front problem, or viscosity in hydro-
dynamics, and so on. On the other hand, each curve is,
generically, tangent to the g axis at ¢=0 [because
o=w(g?)], and its curvature at that point is u dependent.
Two situations may happen: (i) the bifurcation occurs at
q =q,70, as shown in Fig. 3, which means that at small ¢
the stabilizing effect is always dominant regardless of the
value of u, while at a particular value ¢,70, the two
competing effects counterbalance each other, and (ii) the
bifurcation occurs at g, =0, meaning that above a certain
critical value of the control parameter p. the curvature of
the growth rate of the destabilizing contribution exceeds
that of the stabilizing one (Fig. 1). The second situation
occurs generically, since the mode ¢=0 is always a
dangerous mode, due to symmetry. We cannot, however,
exclude the first type of bifurcation from (accidentally)
occurring in principle (there is in fact no physical exam-
ple known to us where the first type of bifurcation
occurs). The aim of this section is to show that the dy-
namics above a bifurcation of type (ii) are described by a
KS equation.

Let us now proceed to the calculation. In the linear re-
gime we insert (2.2) into (2.1), and disregard the nonlinear
part to obtain formally the dispersion relation

L(w,—q%u)=0. (2.4)

The linear stability analysis is the first natural step in any
stability theory. Moreover, it allows one to determine the
characteristic time and space scales close enough to the
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FIG. 2. Dashed line, the dispersion relation for the destabil-
izing effect; the full line, the dispersion relation for the stabiliz-
ing effect.
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FIG. 3. Dispersion relation giving rise to a bifurcation at
70 (the full line); the dashed line represents the dispersion re-
lation below the instability threshold.

bifurcation. Since close to the bifurcation (w,q)=(0,0),
we expand (2.4) about this point

4
le—q2L2+92—L22+ =0, 2.5)

where L,,L, represent the derivatives of L with respect
to the first and second arguments, respectively. Note
that all the constant terms should vanish because of the
existence of a neutral mode at ¢ =0. Before going fur-
ther, an important remark should be made. In general
the linear term in o is present, and therefore we can
neglect higher-order terms in o, such as w’L,, and cross
terms like @g’L,. There is an example familiar to us,
however, where the L, term vanishes close to bifurcation,
and therefore there is a need to take these higher-order
terms into account. The example in question is direction-
al solidification [19] at high speed. In such a situation, it
turns out that the governing equation is not of the KS
type. If interface attachment kinetics are present, howev-
er, the L term is present and KS dynamics [23] are
recovered.

At the bifurcation, both relations (2.3) should hold.
The first one is already exploited, while the second one
yields at the bifurcation [by making use of (2.5);
differentiation is made with respect to ¢?]

L,(0,0,u)=0 . (2.6)

This means that there exists a critical value of u, denoted
by p., at which the bifurcation occurs. Expanding L,
about the bifurcation point, we obtain to leading order,

L,=(u—p,)L,;+ (higher-order terms) . 2.7)

Using this result we rewrite Eq. (2.5) to leading order as

L

Lla)—_—(,u—‘uc)anz—%q“ : (2.8)
Since we assume that (i) the trivial solution is unstable for
u>p,, and (ii) there exists a cutoff wave number above
which all perturbations decay, L,3;/L, and L,,/L, are
both taken as positive. Figure 1 shows the growth rate o
below and above the instability. The quantity u—p, is
the only small parameter that enters here. For brevity we
introduce the notation

€E=u—u, . (2.9)
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From Eq. (2.8), we see that the wave number that corre-
sponds to the maximum growth rate scales as g,,,, ~ V€.
This means that the wave packet that can be constructed
with the active modes has a width of order Ve in Fourier
space, or equivalently it varies on the scale of 1/V'¢ in
real space. We find it convenient to introduce a new vari-
able,

X=Vex , (2.10)

which offers the advantage that the small parameter will
appear explicitly in the governing equation. In this vari-
able the field u will vary on the scale of unity. Using the
fact that the ¢’s of interest scale as V'e, we easily see from
(2.8) that the growth rate scales as w ~€*. As for the spa-
tial variation, we introduce a slow time variable 7T defined
by

T=¢€. 2.11)

Finally, because u =0 bifurcates to a nonzero value at
nw=pu,, we expect u to scale above and close to the insta-
bility as €. We therefore write u =€U, where U is of or-
der 1, and which we expand in a power series of €,

u=eU(X,T)=e(Uy+eU,+ ). (2.12)

Now the scheme is to use (2.10-2.12) together with (2.1)
to deduce successively higher-order contributions in
powers of €.

Order €. To this order we obtain

L(0,0,,)Uy=0 . (2.13)

Since the factor L is equal to zero [expressing the condi-
tion w(g=0)=0; i.e., the existence of a translational
mode], Eq. (2.13) is automatically satisfied, implying that
U, is undetermined at this order. From now on all the
arguments of the operators L and N are understood to be
evaluated at the bifurcation.

Order €*. To this order we obtain

U,
L,—+L,U,=0,

X (2.14)

L =0 (because of the existence of the translational mode)
and L, =0 (it expresses the second condition of the bifur-
cation dw/dq =0). That is to say the equation is also au-
tomatically satisfied at this order. The really interesting
result emerges at the next order, where we obtain a con-
straint on U,,.

Order €’

After using the existence of a translational mode, to-
gether with the second bifurcation equation, we obtain

U, Ly 83U, Ly 3*U, N, [aU, |’
oT L, 9ax? 2L, 9x* L, | X

’

(2.15)

which is the KS equation, which we can rewrite in the
following canonical form:

h,=—h, —h_. . +h?, (2.16)

XXXX

after the following transformation

172

L, L L L,
_t= : 1 ’ B 22 L Uy= 2,

(2.17)

The notations x and ¢ here should not be confused with
those used at the beginning of this section. Equation
(2.16) constitutes a generic description close to criticality
for a rotationally invariant system. This equation often
appears in many contexts, but unfortunately in a some-
what disguised manner due, most of the time, to the fact
that the explicit form of the equation is complex. A typi-
cal situation is encountered in crystal growth [23]. The
present derivation shows clearly the generic origin of the
KS equation. Note that the sign in front of the nonlinear
term in Eq. (2.16) is unimportant, since it can be changed
upon the transformation h— —h and without altering
those of the other terms.

In the presence of an external field along the direction
orthogonal to x, the translational invariance u +const
does not hold anymore. For example, a solidification
front evolving into an external thermal gradient (direc-
tional solidification) has its mean position fixed by the
thermal gradient at the melting temperature; the transla-
tional invariance (corresponding to a constant shift of the
front position) is broken. This implies that the Goldstone
mode is not a neutral mode. In our previous formulation,
the expansion of the dispersion relation (2.4) contains an
additional constant term

4

LitoL, —¢*Ly+%-Ly+ =0 (2.18)
represented by L, and expressing the fact that for ¢ =0,
0#0. We implicitly assume here that the bifurcation
occurs at a small enough wave number, an assumption
that implies that the term breaking the rotational invari-
ance (the term L;) should be weak enough. This is what
we shall see below. The second bifurcation equation (2.3}
provides exactly the same result as in the absence of an
external field, since the derivative suppresses the constant
term. In particular, we obtain that the bifurcation occurs
at ¢=0. This means that at the bifurcation L; vanishes
(this provides the bifurcation curve in the parameter
space) and is small close to the bifurcation as we shall see
below. We should mention that L; is a given physical
field that is fixed from outside, and that therefore its
value does not adjust to some specific value at the bifur-
cation. When we say that it vanishes at the bifurcation,
this is taken to mean that the situation in the absence of
this field is a reference one, and that we consider only
weak deviations from this one. Stated in another way the
effect of the external field will scale with some power of €
in such a way as to make the reasoning coherent. Slight-
ly above the bifurcation, the wave number still scales as
V p—u,. The new feature now is that when we report
this in the first bifurcation equation (w=0), which we
have not yet exploited, we see from (2.18), after expansion
about the critical point, that L; scales as (u—p, ), as
well as the growth rate. We can now repeat our € expan-
sion step by step. Since L, ~¢? and that u ~¢, the effect
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of the external field shows up at third order in € only.
The result is
2

_13_3_U N Uy Ly Uy Ly 3*U, N, |3V,
L, ° dr L, ax* 2L, ax* L, | X
=0, (2.19

where we have set L;=L;¢€% with L, being of order uni-
ty. Introducing the same scales (2.17), we can rewrite
(2.19) as

h,=—ah—h—h,. +h?, (2.20)
where
L,L
=2 (2.:21)
2L%,

Equation (2.20) is what we call the stabilized KS equa-
tion. Physically the stabilizing effect has different origins,
depending on the physical system under consideration.
For example, in directional solidification, the a term
represents the effect of the applied thermal gradient [26];
in step-flow growth this role is played by step-step in-
teraction [24]. Note that now there is no transformation
to scale the parameter a out of the equation. This is the
only parameter that enters our equation and that serves
as a control parameter.

Now having show the generic character of the KS
equation in the presence of damping, we shall deal with
the general question of secondary instabilities. Before
starting this program, some preliminaries are necessary.

III. STATIONARY PERIODIC SOLUTIONS

Let us first define the primary instability as the first
stage for the formation of a cellular pattern. The disper-
sion relation for an infinitesimal perturbation about the
solution h =0(8h ~e®*¥**) which follows from Eq.
(2.20), is given by

o=—a+q*—q*. (3.1)

The critical value of a, «,, for the onset of the (primary)
instability [see (2.3)] and the bifurcation wave number g,
are given by

ac:%a qc:\/—li_ . (32)
Figure 4 shows the neutral curve (0 =0) in the a-q plane,
below which the trivial solution is unstable. The max-
imum of the curve corresponds to the critical point given
by Eq. (3.2).

The linear theory tells us that above the instability
threshold the perturbations grow exponentially in the
course of time, and therefore that the linear approxima-
tions should break down. In order to investigate the sub-
sequent development of the instability, a nonlinear
analysis must be performed. The nonlinear equations
that arise in various situations, even as simple as Eq.
(2.20) do not have analytical solutions, and in order to ob-
tain precise information about the nonlinear regime, a

0.3 F T 3]
1
02+ stable J
3
0.1 r unstable 4
F
0.0 1 —
0.0 0.5 1.0

q

FIG. 4. Neutral curve separating a region where the trivial
solution is stable from that where it is unstable.

resort to a numerical analysis is often unavoidable. Even
in the situation where approached analytical results can
be obtained, the numerical tool is a precious check of
various approximations, and we shall meet this situation
here. Close enough to the instability threshold a weakly
nonlinear analysis is possible (see next section), but we
first use “brute force” to give a complete picture of the
stationary pattern by numerical solution. The steady-
state version of Eq. (2.20) takes the form

—aho_h0xx—h0xxxx+h(2)x=0 ’ (3.3)

where h,(x) is the steady-state solution. Let us first con-
sider periodic solutions with axial symmetry, and let g
designate the basic wave number. We can thus restrict
the domain of integration to a half period only, with the
interval taken to be [0,A/2], where A=27/q. Equation
(3.3) is of fourth order, thus requiring four conditions for
the solution of the boundary-value problem. The symme-
try condition imposes that hy, =0 and hg,, =0 at the
two ends of the integration interval, that is to say, we
have four conditions. This means that a cellular steady-
state solution exists, in principle, for arbitrary values of
the wavelength. Figure 5 shows the domain of existence
of the steady-state solution. Above a value a=0.15
steady-state solutions exist every where inside the neutral
curve. Below this value, there is a minimum wave num-
ber below which the solution with a basic wave number ¢
ceases to exist: the g family runs into a fold singularity

0.3 f ' 1
0.2
3
0.1
0.0
0.0 05 1.0
q

FIG. 5. Full line, the neutral curve. The symbols delimit the
domain of existence of the steady-state solutions.
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FIG. 6. Shape of the cellular solution for ¢=0.1 and its evo-
lution towards the fold. From right to left ¢ =0.47, ¢ =0.48,
and ¢ =0.52.

whereby solutions with 2g as basic wave number merge.
This situation was met in many contexts [27,16]. Figure
6 shows the cellular solution and its evolution when g
varies towards the fold singularity: the cellular solution
first develops a negative curvature at the tip, before it
halves its period at the fold. Note that the period-halving
phenomenon occurs approximately for a wave number
where the 2g mode becomes neutral, as can easily be
checked in Fig. 6.

Having determined the region of existence of steady-
state and periodic solutions, we are in a position to study
their stability (secondary instabilities). The most known
secondary instability is the Eckhaus one. This is a phase
instability. The appearance of such an instability in a
generic way when dealing with various systems can be
traced back to a general symmetry: the translational
symmetry along the x axis. Indeed, assume that A,(x) is
a steady-state solution, then h,(x +®) (where ® is a con-
stant phase shift) is also a solution. For an infinitesimal
phase shift, we have hy(x +®)=hy(x)+Pdh,/3x. The
quantity 0h,/0x is nothing but the Goldstone mode,
which is a neutral mode, and is conjugate to the phase
shift of the pattern. The neutrality of such a mode sim-
ply expresses the fact that an extended system is
indifferent to a global phase shift, due to translational in-
variance. A global phase shift then has an infinite relaxa-
tion time. In order to see whether such a mode might be-
come unstable, we introduce a weak inhomogeneity in the
phase and calculate the response function. The equation
describing the phase evolution is of the diffusive type.
For interested readers we present in the Appendix the ex-
traction of the phase-diffusion equation in the context of
the stabilized KS equation. This instability will also ap-
pear in another way when we use a systematic linear sta-
bility analysis of the periodic solution 4.

IV. SECONDARY INSTABILITIES

In this section we deal with the full linear stability
analysis of the cellular solution h,. For that purpose we
set hi(x,t)=hy(x)+h(x,t) in Eq. (3.3) and neglect all
but linear terms in A :

By =—ah; —hy —huu T 20k . (4.1)

This is a linear equation with periodic coefficient
[hoe(x +A)=h,,]. This entails that the linear operator

commutes with the translational operator T',. This prob-
lem is similar to that of an electron in a crystal, and we
shall return later to this analogy. Since Eq. (4.1) is auto-
nomous with respect to time, the solution is proportional
to ¢?". The Floquet-Bloch theorem states that the gen-
eral solution can be written as

1HiQx ~

hiix,i)=e"? hix), (4.2)

where A has the same periodicity as the basic solution A,
and Q is a real constant. Because of the periodicity of 1%
it is sufficient to restrict Q to the first Brillouin zone,
which we define as Q €[{0,q]. The next step is to expand
both h, and ﬁi in Fourier series

-8
A ingx
h, > c,e"T.

n=-—-«

ho= S A,e", (4.3)

Inserting this into Eq. (4.1) we obtain the equations for
the coefficients ¢,
Ooncy=—[(ng+Q)—(ng+Q)’+ale,

-2 Y (mg+Q)n—mgd,_,c, - (4.4)

m

This is an infinite set of equations that provides an infinite
number of eigenvalues o, (the subscript n is to remind
us that there are n eigenvalues for each Q) for each value
of Q. In reality the number of active modes is limited,
and one can legitimately truncate the matrix equation.
For example, Fig. 7 shows that even for small values of «
and ¢ (say, 0.05 and 0.2) there are approximately only
four modes that are unstable, while all the higher har-
monics are damped and therefore slaved to the first four
harmonics. For most of the calculation, including 20
modes has proven to be more than sufficient. Below we
shall present all the instabilities we have found and give
an overall picture.

A. The Eckhaus instability

This is the most generic instability, as discussed in the
previous section. Slightly below the birth of the cellular
solution (which appears at @, = and g, =1/V"2) we find

0.3

FIG. 7. Neutral curves for the first four harmonics. Long
dashed line, w(4q)=0; dashed line, w(3q)=0; dotted line,
®(2q)=0; and full line, @(g)=0. In the hatched region both the
first and second harmonics are active, while the other ones are
damped.
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that the band of existence of these solutions is limited on
both sides by a long-wavelength phase instability. More
precisely, when g deviates from g, towards large or small
values, one finds that there is a critical g (for a given
a<a,) where the real part of one eigenvalue becomes
positive (its imaginary part is zero), while all the others
are negative. The analysis of the associated eigenmode
shows that this corresponds to a phase mode. Figure 8
shows the eigenvalue below and above the instability
threshold in the first Brillouin zone. As explained in the
Appendix, the phase dynamics are described by a phase-
diffusion equation of the form ®,=D®, , where D is the
phase-diffusion coefficient. A phase instability is signaled
by a negative phase-diffusion constant. Moreover, the
dispersion relation following from the phase-diffusion
equation is given by 0 = —DQ?2. We have checked that
o~Q2 In Fig. 9 the dashed lines represent the limit of
the Eckhaus instability; the structure is unstable outside
these boundaries.

The stability analysis gives information about the onset
and the nature (by analyzing the eigenmodes) of the insta-
bility. In order to study the subsequent development of
the instability, a full numerical solution of Eq. (2.20) is
necessary. The principle of the numerical method is as
follows. The spatial derivatives at each point of the
discretization are evaluated by first calculating the
Fourier transform of the interface, multiplying it with
that power of the wave vector (times the imaginary unit)
that corresponds to the order of the desired derivative,
and transforming back to real space. The accuracy of
this “infinite” order method compares impressively with
a simple O(h?) (h being the mesh size) scheme in long-
time runs. This gain in accuracy precludes, however, the
investigation of large systems, because the matrix to be
inverted in an implicit (time) integration scheme is not
sparse. Once the derivatives are evaluated at all N points
of the integration domain, we obtain formally N first-
order differential equations. For the integration of this
system we choose an implicit scheme that is appropriate
for stiff differential equations in order to handle in partic-
ular dynamics close to bifurcations, and possibly to inves-
tigate the possibility of complex dynamics such as chaos.
The adopted method is Gear’s [28] backward difference
method. Various checks have been made. In particular
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FIG. 8. Spectrum of the Eckhaus instability in the first Bril-
louin zone; below threshold (dashed) and above threshold (full).
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Wave number q

FIG. 9. Full phase diagram that results from the linear sta-
bility analysis. The dashed line, the boundary of the Eckhaus
instability; the dotted line, the boundary below which the
period-halving transition occurs; the dashed-dotted line, the
boundary below which BP solutions appear; the empty symbols,
the boundary of the VB mode; the filled symbols, the boundary
of the IVB mode.

we have checked that the dynamical code reproduces well
the steady-state solutions obtained by a shooting method.

Now we are in a position to show the full dynamical
evolution of the Eckhaus instability. Since this is a long-
wavelength instability, an integration with aspect ratios
of the order of, or larger than, ten are necessary to allow
the manifestation of the Eckhaus instability. Figure 10
shows the evolution of the solution. The initial wave
number is taken inside the Eckhaus-unstable domain
(right part in Fig. 9). One sees there that there is first a
long-wavelength modulation of the phase, which eventu-
ally results in the destruction of cells (two cells in the
present case). The wavelength adjustment occurs via a
phase-diffusion process. The final wave number has de-
creased, and thus the structure reaches a wave number

20.0 p

15.0 p

10.0
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FIG. 10. Spatiotemporal portrait showing the dynamics of
the Eckhaus instability. We start with @=0.2 and ¢ =0.8 (in-
side the Eckhaus unstable region). The final result is the de-
struction of two cells, and the final wave number is g =0.64,
which is inside the stable region.
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inside the Eckhaus-stable region. Had we started with a
wave number on the left part of the Eckhaus-unstable re-
gion, we would then have obtained the creation of new
cells, thereby increasing the wave number.

B. The parity-breaking instability

Close to the primary instability, only the first harmonic
is active, and the only instability is the Eckhaus one. As
a decreases, the number of active modes increases. The
second harmonic becomes competitive with the first one,
and thus the dynamics are expected to become richer and
richer. We have found that below o;=0.15 (that is,
when the second harmonic becomes dangerous) that (i)
for large ¢’s the Eckhaus instability still persists (note
that in that region the second harmonic is damped), and
(i1) in the small-g region a new instability appears in addi-
tion to the Eckhaus one. We represent the boundary
below which the new instability appears by a dotted-
dashed line in Fig. 9. This instability has the following
feature: it appears in the center of the Brillouin zone
(Q =0). That is to say, this is a homogeneous instability.
The behavior of the spectrum below and above this insta-
bility is shown in Fig. 11. It is important to observe that
the instability is present everywhere outside Q =0. This
feature is found in another situation [29]. We believe that
this feature is generic and is associated with the per-
sistence of the Eckhaus instability. We shall see in Sec.
VI that this results in the fact that the BP mode, al-
though it can be observed as a localized mode (escaping
thus the long-wavelength instability), will still potentially
suffer long-wavelength instabilities. This explains why in
most cases the BP mode manifests itself as a localized
structure.

The eigenmode associated with this instability is an-
tisymmetric, which breaks the symmetry x — —x. Thus
the appearance of this mode results from a parity-
breaking instability inasmuch as the original equation of
motion is symmetric under reflection at the symmetry
axis. This instability has been observed experimentally in
many systems and found theoretically in specific situa-
tions. The fact that the stabilized KS is one of the sim-
plest nonlinear equations we can think of, and that its
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FIG. 11. Spectrum representing the PB instability. One sees
that o(Q =0)0. The dashed line, below the instability; the full

line, above the instability.
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FIG. 12. Spatiotemporal portrait of the BP solution
(@=0.15, g =0.46).

form is generic points to the fact that parity breaking is a
generic instability occurring at a sufficiently large wave-
length.

Figure 12 shows the full dynamical solution after the
parity-breaking bifurcation occurs. As a result of this
symmetry breaking, the pattern drifts sideways. In the
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FIG. 13. Spectrum representing the VB instability. The
dashed line, below the instability; the full line, above the insta-
bility. One sees that Re(o) (a) crosses zero at Q/q=5, and
Im(o )70 (b).



49 SECONDARY INSTABILITIES IN THE STABILIZED . . . 175

next section we shall deal with the analytical theory of
secondary instabilities and shall see that the PB bifurca-
tion occurs as a result of a resonant interaction of the first
and second harmonics.

C. The vacillating-breathing mode

We have also identified another secondary instability
that occurs in the middle of the first Brillouin zone (note
that the two instabilities discussed above occurs at or
close to Q =0) and is oscillatory in time. This is an oscil-
latory spatial-period-doubling instability that occurs
below the boundary represented by empty triangles in
Fig. 9. The associated spectrum is shown on Fig. 13,
while Fig. 14 displays the dynamics of this mode. One
sees there that each cell oscillates in phase opposition
with its neighbors (vacillation), while the top of the cells
vibrate in a breathing fashion. This mode has been ob-
served on many systems and found numerically in the
context of directional growth of a nematic phase [15].
The fact that here a very simple equation—but
generic—reveals such a mode is also a signature of its
genericity. In the next section we shall give our analyti-
cal understanding of such a mode based on an analogy
with the problem of a quasifree electron in a crystal.

D. The “irrational” vacillating-breathing mode

The VB mode discussed in Sec. IV D results from an
instability having a wavelength twice as large as the basic
one—the critical wave number is at the middle of the
Brillouin zone. As a decreases we find that the critical
wave number deviates continuously from the center of
the Brillouin zone; so to speak, it has no simple relation
to the basic wave number. Having in mind the fact that
the irrational numbers constitute a dense set of nonzero
measure (in the jargon of number theory), we find it
somewhat legitimate to call this mode irrational
vacillating-breathing mode. Stated in another way, the

0
0.0 0.5 1.0 1.5 2.0
x/IA
FIG. 14. Spatiotemporal portrait of the VB mode (a=0.1,
q=0.64).
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FIG. 15. Spatictemporal portrait of the IVB mbde (a=0.05,
q=0.68, Q/q=0.3).

new mode is generically incommensurate with the basic
pattern. In Fig. 9 the filled triangles represent the bound-
ary of the appearance of this mode, while its dynamics is
shown in Fig. 15.

E. The period-halving bifurcation

There exists another type of bifurcation, already dis-
cussed in Sec. III. When g decreases (at fixed a <0.15),
the cellular structure ceases to exist; the cells split alto-
gether. The dotted line on Fig. 9 constitutes the bound-
ary below which this occurs. In the next section we shall
deal analytically with this bifurcation.

V. ANALYTICAL TREATMENT
OF SECONDARY INSTABILITIES

Our aim here is to present our current analytical un-
derstanding of the secondary instabilities reported in the
previous section. The Eckhaus instability, which is by
now classical is discussed separately in the Appendix.
The analytical examination of the parity-breaking insta-
bility is not a new description and is traced back to
Malomed and Tribelsky [30]. The descriptions of the VB
and IVB modes are novel aspects of the present paper.
We feel it worthwhile to present also the analytic theory
of the BP mode. Indeed, due to the simplicity of the KS
equation, the analytical descriptions of various modes are
easily exemplified in this equation, which serves as a
pedagogical example for the understanding of secondary
instabilities.

A central point for the description of the PB and the
period-halving bifurcations is to map the full dynamics
onto that of two resonant Fourier modes, while the VB
and IVB necessitate another treatment. Let us first
derive the equations for the two-mode coupling. An im-
portant point in the analysis is that we assume that only
the first and second harmonics are active, while all higher
harmonics are slaved to them. The corresponding region
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in the parameter space is the dotted one in Fig. 7; on its
right only the first harmonic is unstable. The first step is
to expand h(x,t) in Fourier series, h=37_ _ A4,(1)e"",
and insert this into Eq. (2.20) to obtain

A}I:wn(q)An— 2 (n_ )mq An*m m ‘5'1)
m=

where we have set ,(q)=—(a—nqg*+n'q*). We as-
sume that the growth rates of the first and second har-
monics are small enough for the truncation of the ampli-
tude equations to make sense. This requirement is
fulfilled if one concentrates on the situation close enough
to the codimension-2 bifurcation (that is, close to the
point where both harmonics are quasineutral). We shall
also limit our expansion to third order in the amplitudes
of the harmonics. Since in such a treatment the ampli-
tude is proportional to the square root of the distance to
the codimension-2 point (as is usually the case in a Lan-
dau expansion), higher-order terms induce negligibly
small contributions. If we are interested in the dynamics
of the first and second harmonics, one may be naively
tempted to write (5.1) for n =1 and n =2, and keep in
both equations only 4, and 4, up to third order in the
amplitude expansion. This is however not quite legiti-
mate. Indeed, although higher harmonics are damped
they will still contribute to the dynamics of the first lead-
ing modes. To see this point it suffices to notice that in
the equation of A, there are terms like 4} A, and that
the slaving of the third harmonic to the first two induces
A;~ A, A, (note that both terms can be directly inferred
from translational invariance), so that 4% 4, ~ || A4,||" 4,
a term that should be retained. Similarly, in the equation
for 4, we must retain terms like 4,473, since from the
slavmg procedure A,~ A3, so that Ay A%~ 4,]7 4,.
Therefore to make a self-consistent calculation of the
two-mode equations we must keep the leading terms con-
taining 4, and A4, and express them as functions of the
ﬁrst two harmonics from the slaving conditions
(4,=A4,=0). Having taken care of this point, one can
see that the calculation is then straightforward and leads
to the two coupled equations

{ — VAR 48q2 2
A, =w(g)A,+4g* AT A, + Al A,)17, (5.2
- w(3q)
: 24q°
A3=waA2~fA%+mG - A, A,
6442 2
+ A,|l A4 . 5.3)

It is convenient to rewrite these equations by introducing
the modulus and the fhase of the complex amplitudes,

-

41—(116’ L, A,=a,e
. 48q° 2
= +4q° 6)+ , 5.4)
a,=wl(qla,+4q°a,a,cos(8) a)(3q)a]a2 (
a1¢5|:4q201025in(9) , (5.5)
2442 64q*
=w(2q)a, —q*aicos(0)+ w(3q)a2af+ w(fq)ag ,
(5.6)

a,b,=q’a’sin(9) , (5.7)

where 6=¢,—2¢,. From a simple algebraic manipula-
tion of Egs. (5.5) and (5.7) we obtain an equation for 6,

6=gq*lai/a,—8a,]sin(6) . (5.8)

It is readily seen that the number of degrees of freedom is
three; that is, Egs. (5.4), (5.6), and (5.8) are closed equa-
tions for the three quantities (a,,a,,0). Once the equa-
tions are solved for these quantities we can determine ¢,
and ¢, from the detached equations (5.5), (5.7). This is a
consequence of the translational invariance: one of the
phases is arbitrary.

Since the field A (x,?) in the two-mode interaction pic-
ture can be written as

—_— 1 21
h=A,e' "+ 4,e"P+c.c.

=2a,cos(gx +¢,)+2a,cos(0)cos(2gx +2¢,)
—2a,sin(0)sin(2gx +2¢,) , (5.9

one sees that the profile contains an antisymmetric com-
ponent as long as sin(6) is nonzero. Thus 6 can be
thought of as an orderlike parameter for the parity-
breaking transition. Note also that as soon as
O0=const#0, ¢, (and ¢,) is a linear function of time [see
Eq. (5.5)], stating that parity breaking induces a drift of
the pattern. Below, we shall discuss the period-halving
bifurcation and the parity-breaking one separately.

A. Period-halving bifurcation

Let us first concentrate on the situation where the pat-
tern is symmetric. We then set =0 or 6= (and we
shall see below that the two states are not identical; this is
easily seen from (5.9) since in one case the second har-
monic acts with a positive sign, while in the other case
with a negative one).

1. Pure mode P* and P~

Since we are interested in steady-state solutions, the
equations of motion (5.4) and (5.6) take the form

48
wiq) al—f4q2a1az+malagzo, (5.10)
_ 24q° 64q°
0(2 ,tqlat+ 1+ 3=0, (51D
w(2q) a,tqga; w(}q)aza‘ (4q)a2

where the upper (lower) sign corresponds to the P ' (P )
mode. Equation (5.10) has a trivial solution a, =0, and it
is the associated mode that we refer to as the pure mode.
This is taken to mean that the contribution to the field is
composed purely of the second harmonic only. It is easi-
ly seen that for this mode P and P~ are identical and
are characterized by

a, =0,
6=60,=xw (P,),
(5.12)
6=60_=0 (P_)
a%: c)(2q)w§4q)>0.
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FIG. 16. Amplitude of second harmonic a, as a function of
the wave number g in the two-mode interaction picture (see
text).

Since the fourth harmonic is damped [w(4q) <0], the last
condition is satisfied as long as w(2¢)>0. In other
words, the pure mode merges at the point where the
second harmonic becomes neutral. Condition (5.12) is
satisfied, for a given a, below a certain critical value of
the wave number. The limit below which this occurs is
shown by the dotted line in Fig. 9. We have also plotted
in Fig. 16 the amplitude of the second harmonic as a
function of ¢ for a=0.1.

2. Mixed modes M+ and M~

The mixed mode corresponds to the solution of (5.10)
and (5.11), with a;70. We can then solve for a, from
Eq. (5.10) and report the result into (5.11) to solve for a;.
The result is

172
_ o(3q) 2 4+ 48q°w(q)
=227 (4242 |4g¢— L D] , 5.13
T8 | TN |M T T eBg) 613
a,[w(2qg)+64q%a3 /wl4q)
2= 2[0(2g)+64g°a3 /w(4q)] (5.14)

Fq2—24q%,/w(3q)

Since w(3q) <0 and w(q)> 0, the argument of the square
root is positive. So the only restriction for the existence
of such a mode comes from the condition a?>0. We
should distinguish between the two types of modes. The
result is

[w(2q)+649%a3 /o(4q)][q>+24q%a, /o(3q)] <O

M,), (515

(29)+64g%a3 /w(4g)>0 (M_) . (5.16)

Since a, is given above by Eq. (5.13), the present condi-
tion corresponds to a region in the (a,q) plane. For a
fixed a=0. 1, this branch is represented in Fig. 16.

One sees that if the equality in the above condition of
existence holds simultaneously for both modes, we obtain
a?=—w(2q)w(4q)/64¢2, which is just the condition we
obtained in the pure mode discussed above. That is to
say, when this condition is met we have a transition from
the mixed mode (where both the first and second harmon-

ics are present) to the pure mode. Figure 16 shows the

amplitude a, as a function of g for M and M ~, where
one observes that both branches branch off the pure
mode one (but at different points).

B. Parity breaking

The question now is whether Egs. (5.4), (5.6), and (5.8)
can be solved for a nontrivial value of 6, and if so to
determine the critical condition for the onset of bifurca-
tion. Equation (5.8) can have a fixed point with a non-
trivial value of 6. This happens if

al=8a} . (5.17)

The other conditions of stationarity of the pattern follow
from the two remaining equations [Egs. (5.4), (5.6)]:

48¢2
2 4-3%9°  2—p .
wlq) a,+4q°a,a,cos(6) a)(3q)alaz , (5.18)
244> 6442
o(2q) a,—qla’cos(8)+ wffqﬂz“?*w(fq)a%w
(5.19)

This set shows that a; and a, are both parametrized by
6, so that Eq. (5.17) is an implicit equation for 6. The
procedure is easy in principle. It consists in using the
condition (5.17) and solving for cos(8) and a3 from Egs.
(5.18) and (5.19). We obtain

(3q)w(q)+48q%a3
cos(o)=— A I T (5.20)
4g9°w(3q)a,
al=— [20(q)+w(2q)]w(3q )w(‘:q) (5.21)
32[9w(4q)+2w(3q)]q

subject to the conditions [following from a3 >0 and
|lcos(8)|| <1]

20(q)tw(2q)>0,
(5.22)
lo(3g)ew(q)+48g%a3|| < —4q’w(3q)a, ,

where we have taken into account the fact that w(3q) and
w(4q) are both negative. These conditions define the
domain of existence of the broken-parity state, where the
“order parameter” 6 is given by (5.20). Note that the
first condition in (5.22) expresses the fact that at least one
of the two modes should be active (i.e., having a positive
growth rate) and that the damped one (if any) should not
be highly damped. This explains that parity breaking
occurs only if there is no dominance of one harmonic
over the other, but only if both are competitive. In Fig.
16 we show the branch that corresponds to the broken-
parity state, which bifurcates from the mixed M * mode
slightly before the transition to the pure mode. It can
easily be checked that the critical point where this hap-
pens corresponds to the loss of stability of the mode M *
against homogeneous perturbations.

It is interesting to go back to Eq. (5.8) and expand it
for small 8 about the critical point defined above. It is a
simple matter to show that, for a given a, the equation
for 6 takes, to leading order, the following form:

0=(g*—q)BO—76*, (5.23)
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where 3 and y are positive quantities (which can be ex-
pressed formally as functions of ¢ and a), and ¢* is the
critical wave number below which nontrivial solutions
exist. Equation (5.23) shows that parity breaking is a
standard supercritical bifurcation.

Once we have found a fixed point corresponding to the
BP mode we can return to Egs. (5.5) and (5.7) to see the
implication of the parity-breaking bifurcation. Since the
BP mode corresponds to fixed points of (a,,a,,0), the
right-hand sides of (5.5) and (5.7) are independent of time,
which implies that both phases are linear in time, so that
Eq. (5.9) can be written as

h=2a,cos[q(x —vt)]+2a,cos(6)cos[2g(x —vt)]

—2a,sin(0)sin[2g(x —vt)] , (5.24)
where v, the drift velocity, is given by
v=—4qa,sin(8) . (5.25)

One sees thus, as anticipated, that parity breaking results
in a drift of the pattern. The field h(x,t)=h(x —uvt), and
it is possible to go back to the original equation (2.20) and
look for solutions of this form in the full analysis (beyond
the two-mode coupling truncation). The result is a non-
linear eigenvalue problem for the unknown quantity v.
We have solved this problem in order to compare our re-
sults with those obtained in the two-mode interaction pic-
ture. Suffice it here to say that as long as « is not too far
from the codimension-2 point (a~0.15), the full calcula-
tion reproduces well the results summarized on Fig. 16.

C. The VB mode

In this section we present our understanding of the ap-
pearance of the VB mode. For that purpose we restart
from Eq. (4.1)

Uhlz_ahl—hlxx_hlxxxx+2h0xh1x ’ (5.26)

where we have set h (x,t)~e“". Equation (5.26) is rem-
iniscent of the eigenvalue Schrodinger equation for an
electron moving in a crystal, in the sense that it is a linear
eigenvalue problem with spatially periodic coefficients.
The analogue of the potential is s, (x ), which can be ex-
panded in Fourier series, while the form of h, follows
from the Floquet-Bloch theorem, as explained in Sec. IV.
It can be written as

hy=e@[by+by., e +by e W+ -], (527)
where we have attributed to the amplitudes of the plane
wave functions their total wave number as a subscript.
The first term represents the ‘““‘incident” wave function,
while the second and third ones, the transmitted and
reflected wave functions, respectively.

In the full numerics we found that at the critical point
where the VB mode appears only the first harmonic in Ak
is important and that a, is as small as 0.25. Therefore
the quantity h,, ~qa,; =0.25 (g ~1). As a consequence,
and in a first step towards the understanding of the origin
of the VB mode the “potential” A, in (5.26) can be treat-
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FIG. 17. Bare spectrum in the extended zone representation.
One sees that there are two relevant intersections: one between
the Q branch and the Q —g one (which occurs at Q /g = 1;), and
the other between Q branch and the Q + g one, approximately at
Q /g ~0.52 (the third intersection is between the “Q+g¢” and
“Q +q" branches, and is irrelevant for our purposes (see text).

ed in a perturbation theory (note that the other
coefficients are of order unity). We are in a situation
analogous to that encountered in the so-called quasi-
free-electron limit. The eigenvalue o(Q) has the proper-
ty o(Q+q)=o(q), where ¢ is the basic wave number.
Let w(Q) denote the eigenvalue of the bare problem,
where Q belongs to the first Brillouin zone. This is given
by ©(Q)=—a+Q*—Q* This quantity is the analogue
of the free-electron energy. It is convenient to represent
this quantity in reciprocal space in the extended zone rep-
resentation. Figure 17 shows this quantity. It is seen
there, and because the topology of the present energy is
more complicated than a parabola (because of the pres-
ence of a cut-off wave number), that we have three inter-
sections close to the horizontal axis (and these are the
most relevant since we are interested in those branches
that potentially produce a neutral -eigenvalue).
The first intersection corresponds to the situation
o(Q)=w(Q —q), which leads to Q=g¢q /2, and there is a
second one that corresponds to w(Q )=w(Q +¢) and hap-
pens at Q not too far from g /2. The third intersection,
unimportant here (as we shall discuss at the end of this
section), corresponds to the intersection between the
“Q +¢q” branch and “Q —¢q” one, and occurs at Q =0.
The first case is similar to what happens in the quasi-
free-electron problem, while the second one is a new as-
pect, and it is responsible for the appearance of the VB
mode, as we shall see below. Let us consider each case
separately.

1. Resonance between the wave function and its reflection

It is clear that the most important interaction of the
nonperturbed states corresponds to the situation where
the eigenvalues coincide. The first coincidence comes
from the intersection of the bare spectrum of the incident
wave function with that of the reflected one (the Bragg-
like reflection), o(Q)=w(Q —g). The eigenstate close to
this intersection is a superposition of both wave functions
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hy=bge'®+by_,e'C79x (5.28)
Inserting this into (5.26), we obtain the following system:
oby_,=0(Q—qlby_,+290A4 by , (5.29)
oby=w(Q)by—29(Q—q)A by, . (5.30)
The associated eigenvalues are given by
o=t owlg)+w(Q—q)
£V [0(g)—o(Q—q)P—16¢°Q(Q —q)|| 4|} .
(5.31)

Since Q <q (Q is confined to the first Brillouin zone), the
argument of the square root is always positive, thus indi-
cating that o is real. At the intersection point, we have

o=w(Q)+2¢*|4,| . (5.32)

This means that the resonant coupling between the wave
function and its reflection results in the creation of a o
gap, similar to the energy gap in quantum mechanics.
Figure 18(a) shows schematically the situation.

2. Resonance between the wave function
and its transmission
In quantum mechanics there is only a creation of a o
gap. The reason is that the Hamiltonian is self-adjoint,

(@)

0.5

0.5 1.0

Q

FIG. 18. Schematic plot showing the creation of a o gap (a)
and a Q gap (b).

implying that the eigenvalues are real. In the present
problem the linear operator is not self-adjoint [due to the
presence of hy, in Eq. (5.26)]. Therefore complex eigen-
values are permissible. This will manifest itself by the ap-
pearance of a gap in Q axis, rather than in the o one.
This is what we shall obtain by analyzing the coupling be-
tween the wave function and its transmission. The asso-
ciated mode takes the form

hy=bge@+b,, e/ @Tx (5.33)
which leads to the system

oby=w(Q)by+29(Q—q)A by, , (5.34)

obyg=w(Q+q)by,,—29Q4,by , (5.35)

resulting in the dispersion relation
o=1{wlg)+w(Q+q)
+V[0(q)—o(Q+4¢)1’—16gQ(Q +q)|| 4,|*} .
(5.36)

At (and close to) the intersection point o takes the form
o=w(Q)*i2q| 4,||VQ(g+Q). (5.37)

One sees that now the resonance results in the appear-
ance of a complex eigenvalue. We have checked that the
frequency of oscillation is of the order of that obtained in
the full linear stability analysis.

This is an unusual aspect that has no analogue in the
problem of an electron in a crystal. Let us show that this
result is equivalent to the appearance of a gap in the Q
axis. For that purpose it suffices to expand (5.36) about
the intersection point at fixed o. The result is

_ 44°0(Q+q)| 4,
0'(Q)w'(Q+q)

8Q%= , (5.38)

where the prime designates differentiation with respect to
Q, and 8Q, the deviation from the intersection point.
Since at the intersection of the Q and Q +¢ branches, the
slopes ©'(Q) and o'(Q +¢) have opposite signs, §Q%> 0:
the resonance results indeed in the creation of a gap in
the Q axis. Figure 18(b) shows schematically the result.

It is this mechanism from which originates the VB
mode. To show it we have analyzed the full dispersion
relation (5.36) in the parameter plane (a,q) and have in-
vestigated the spectrum as a function of Q. We have
plotted in Fig. 19 the domain where both Re(o)>0 and
Im(0)#0. The domain where Re(g)>0 lies below the
dashed line in Fig. 19, while that where Im(o )#0, below
the dashed-dotted line. In the domain below the intersec-
tion of these two curves we have both Re(o)>0 and
Im(o )70, which is the desired domain. The triangles
represent the limit of the appearance of VB modes ob-
tained in the full linear stability analysis presented in Sec.
IV. As presented in that section, the VB mode survives
down to a=0.1, while below this value the IVB mode
prevails. That is to say, the most dangerous mode oc-
curred first at Q =¢q /2, while by reducing a we found a
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FIG. 19. Comparison between the analytical and the full cal-
culation. Below the dashed-dotted line Im(o)#0; below the
dashed line Re(o) >0, the symbols are the results from the full
calculation, and the dotted line delimits the period-halving
boundary.

continuous deviation from this value. In our perturba-
tion scheme, although we do not find a quite quantitative
behavior, the same qualitative behavior is found. By in-
cluding two higher-order reflections of the wave function
we capture quantitatively the results of the full calcula-
tion. We should note that our perturbative calculation is
valid (1) if the amplitude of the first harmonic is small
enough, and (ii) if the other harmonics are negligible. By
reducing the value of a both conditions become progres-
sively violated. Indeed, the amplitude of the first har-
monic becomes larger and larger as one moves away from
the primary threshold, and the other harmonics become
more and more active. It is for this reason that there is a
discrepancy (as far as the pinning of Q at g /2) between
the full calculation and the perturbative one when « is
small enough. As our wish was to understand the basic
ingredient of the appearance of the VB and IVB modes,
we do not feel it worthwhile to linger here on details.

Two remarks are in order. First, our analysis is pedes-
trian and captures the essential features. Second, al-
though our reasoning was put into practice on the stabi-
lized KS equation, the present analysis can be used in
more complex situations. In particular, we have drawn
similar conclusions from more complicated equations
[29].

Finally, it can easily be recognized that the “Q+g”
and “Q —¢q” waves do not couple to leading order in the
amplitude expansion of h,. More precisely, their cou-
pling is mediated by the second harmonic (with 4, as an
amplitude). It is a simple matter to include the second
harmonic to treat this coupling. Emerging from this
analysis is the creation of a o gap.

VI. BEYOND SECONDARY INSTABILITIES

Hitherto, we were concerned with the birth of secon-
dary modes and their subsequent dynamics for small as-
pect ratios (except the Eckhaus instability) and in a limit-
ed range of parameters. The question naturally arises of
whether or not the secondary modes are everywhere
stable. For example, would these modes survive for
larger aspect ratios? Since the Goldstone mode is still
present due to translational invariance, it is legitimate to

expect that some of the modes may suffer long-
wavelength instabilities, and this is what happens to the
BP mode, for example. We did not make an exhaustive
study of the dynamics. We have nevertheless important
information, for which we give only a brief account. We
discuss separately various results.

A. Mixture of VB and BP modes

We have investigated the evolution of the VB mode.
In Sec. IV we have already shown the dynamics (Fig. 14)
at =0.1 and ¢ ~0.64, which is not far from its birth.
As a decreases the limit cycle associated with the VB
mode undergoes an instability that is parity breaking.
The pattern drifts sideways while the VB mode subsists.
The behavior is shown in Fig. 20. It is important to
know whether each mode maintains its identity or not, or
in other words whether the ratio of the two temporal fre-
quencies associated with both modes is rational or irra-
tional. To answer this question we have computed the
Poincaré map. For the parameter values we have investi-
gated so far, we have only found either a mode locking or
a weak incommensurability of the two modes. In the first
case this means that the Poincaré map consists of isolated
spots, while in the second case this means that the Poin-
caré map is not covered densely (or that the trajectories
do not cover the torus in phase space densely). At
present this also indicates most likely that this mode is
not a prelude to temporal chaos, contrary to what was
found in another situation [15].

B. Long-wavelength instabilities of the BP mode

This question was motivated by a result obtained by
Fauve, Douady, and Thual [31] on the normal form of
Coullet et al. [12]. Indeed Coullet, Goldstein, and
Gunaratne [12] have written a coupled amplitude-phase
equation for the parity-breaking mode, inferred from
symmetry arguments. Fauve, Douady, and Thual [31]
have pointed out that the homogeneous BP state suffers a

0.0 0.5 1.0 15 2.0

FIG. 20. Spatiotemporal portrait showing a mixture of a VB
and a BP mode (¢=0.048, ¢ =0.53).
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long-wavelength oscillatory instability close enough to
the critical point. We investigated this question both by
performing the full linear stability analysis of the BP
state and by solving numerically the time-dependent non-
linear equation. The linear stability analysis shows
indeed that the BP mode suffers a long-wavelength oscil-
latory instability close enough to the critical point, as
found from the equation of Coullet, Goldstein, and
Gunaratne [12]. The full dynamics, which is still in pro-
gress, shows that an initial extended BP state is indeed
unstable: the state exhibits fragmentations initiated by
the creation or destruction of cells, leading ultimately to
a modulated structure. This (long-wavelength) instability
is most likely the reason why one often sees in experi-
ments only localized asymmetric cells. We hope to pur-
sue our analysis, in particular to answer the important
question of wavelength selection mediated by the per-
sistent passage of the “solitary” asymmetric wave, as ex-
pected from the analysis of Coullet, Goldstein, and
Gunaratne [12], who assume a subcritical parity-breaking
bifurcation, and that of Caroli, Caroli, and Fauve [32],
who dealt with a supercritical bifurcation, as encountered
here.

C. Anomalous cells

There are many experimental situations where the pat-
tern exhibits a pair of so-called anomalous cells. This is a
pair of two neighboring cells, each asymmetric and a mir-

20.0

=

%%%%

3

15.0

)
_

10.0

=

(

5.0

4.0
2.0

0.0

-2.0

0.0 1.0 2.0 3.0
X/

FIG. 21. Dynamics showing the creation of pairs of anoma-
lous cells and their destruction and so on (a). In (b) we have
plotted the anomalous cells.

ror image of the other. Our belief is that the origin of
this cell doublet is the same as that of parity breaking.
Because parity breaking is a pitchfork bifurcation, there
is a degeneracy lying in the fact that right- and left-
traveling states are physically equivalent. Thus, we can
imagine that each cell may maintain its identity, and
choose the right one, while the neighbor, the left one.
This feature is somewhat similar to that encountered in
ferromagnet domain structures.

In a stationary regime, we have not yet investigated
this question, and hope to elucidate it in the future. We
have found, however, in the numerical study of the full
equation, for moderate aspect ratio (about four), the ap-
pearance of anomalous cells. This structure did not man-
ifest itself here as a permanent one, at least for the range
of parameters explored so far. The anomalous doublet
occurs from the VB mode; it nucleates after a cell
creation (Fig. 21), and then the doublet disappears, and
so on. Our study is very preliminary, but clearly shows
the presence of an underlying fixed point of an extended
anomalous state.

VII. CONCLUSION

We have presented an extensive study on secondary in-
stabilities, plus some preliminary results that go beyond
this. Our analysis is a combination of analytical and nu-
merical work. We have given a proof of the genericity of
the equation for which this study has been done. We ex-
pect therefore the results presented here to concern
generically nonequilibrium pattern-forming systems.
There is indeed an increasing number of physical systems
that manifest features found in the present study. There
is, to our knowledge, yet no experimental evidence, how-
ever, for the IVB mode. It was fascinating to see that
despite the simplicity of the stabilized KS equation (one
of the simplest nonlinear equation we can imagine) it ex-
hibits a rich variety of steady and dynamical features.

Although this work has dealt with a number of
features, it is far from having exhausted all possible dy-
namics. For example, the question of the “solitary” dy-
namics, and its implication on wavelength selection is of
paramount importance to guide future work on this
long-standing puzzle, and the stabilized KS equation is an
appropriate candidate for the study of this question.

Finally, little is known about interface dynamics for a
true two-dimensional front. There we expect many new
features that have no topological analogue in the one-
dimensional front, such as chirality. The generalization
of the stabilized KS equation to this situation is straight-
forward, and it is clear now that the advantage in using
the stabilized KS equation in such a context is obvious.
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APPENDIX: THE PHASE-DIFFUSION EQUATION

In this appendix we extract from Eq. (2.20) the part
that is relevant to phase dynamics. For that purpose we
use a similar method to that used in other contexts [4].
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As stated before, the Goldstone mode is neutral, meaning
that a constant phase shift has an infinite relaxation time,
due to translational invariance. In order to see whether
this mode is dangerous, and if so under which condition,
we introduce a small inhomogeneity in the phase. That is
to say we look for long-wavelength perturbations of the
phase of the pattern. For a completely homogeneous pat-
tern, the field is 27 periodic in the phase ¢. In the pres-
ence of inhomogeneity, the phase ¢ is a function of space
and possibly time, ¢(x,t). Accordingly, the local wave
number q(x,t)=0a¢/dx varies in space and time. The
demand that the wave number be a slow function of x is
satisfied by requiring that the phase ¢ scales as
¢~D(X,t)/€, where ® is a slow function of space, as ex-
plicitly shown by the introduction of a slow variable
X =e€x, where € is an auxiliary small parameter measur-
ing the strength of the phase modulation. On the other
hand, due to the Onsager law, we expect any inhomo-
geneity to result in a phase-diffusion current. Therefore
we expect the time scale of the motion of interest to be of
order €. Accordingly, we introduce a slow variable
=€, so that the fast phase scales as

(A1)

The introduction of slow scales means that we consider
formally A as a function of the three (independent) vari-
ables (¢,X,7). We are therefore to understand that we
must make the substitutions (to leading order in €)

0 0 d d 0P d .

— g te——, —>— — . {A2)

ax T3s  “ox’ o ar 30 ‘
The pattern responds to the phase modulation, so that #
is written as

h(¢p,X,7)=hy+eh,+ -+ . (A3)

The strategy now is to insert (A2) together with (A3) into
the governing Eq. (2.20) and deduce successively higher-
order contributions in powers of €.

Order €°. To this order we obtain

_aho"“qzhom“q“homw+q2h(2)¢:0 . (A4)

|
i

27 + 2 . 2 ,
D= ‘fn doh, {_zqh0¢h0q+qh0¢q+(qh0¢b)q+q$h()qd)dm§+q (G006 )g + 0@ Pogss)y + (@ Rogas),

A phase instability is signaled by a negative diffusion con-
stant. The computation of the phase-diffusion coefficient
requires the determination of both the steady-state solu-
tion and the adjoint function. The first question has al-
ready been discussed in Sec. III. The adjoint function
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